LESSON 4.4b

Factoring Polynomials by Grouping

Today you will:

- Use the grouping technique to factor polynomials
- Practice using English to describe math processes and equations

Core Vocabulary:

- Factor by grouping, p. 181
- Quadratic form, p. 181

Core Vocabulary:

- Factor by grouping, p. 181
 - Group pairs of terms that have common monomial factor.
 - Only works for some polynomials.
 - The pattern:

$$ra + rb + sa + sb = \frac{r(a+b)}{r(a+b)} + \frac{s(a+b)}{s(a+b)}$$
$$= \frac{(r+s)(a+b)}{s(a+b)}$$

• Example:
$$x^3 + 2x^2 + 3x + 6 = \frac{x^2(x+2) + 3(x+2)}{(x+2)}$$

= $(x^2 + 3)(x + 2)$

Factor $z^3 + 5z^2 - 4z - 20$ completely.

SOLUTION

$$z^3 + 5z^2 - 4z - 20 = z^2(z+5) - 4(z+5)$$
 Factor by grouping.
 $= (z^2 - 4)(z+5)$ Distributive Property
 $= (z-2)(z+2)(z+5)$ Difference of Two Squares Pattern

Factor $x^3 + 4x^2 - x - 4$ completely.

SOLUTION

$$x^{3} + 4x^{2} - x - 4 = x^{2}(x + 4) - (x + 4)$$

$$= (x^{2} - 1)(x + 4)$$

$$= (x - 1)(x + 1)(x + 4)$$

Factor by grouping.

Distributive Property

Difference of Two Squares Pattern

Factor $3y^3 + y^2 + 9y + 3$ completely.

SOLUTION

$$3y^3 + y^2 + 9y + 3 = y^2(3y + 1) + 3(3y + 1)$$
 Factor by grouping.
= $(y^2 + 3)(3y + 1)$ Distributive Property

Core Vocabulary:

- Quadratic form, p. 181
 - An expression in the form $au^2 + bu + c$ where u is an algebraic expression.
 - Example: $x^4 + 2x^2 + 1$
 - Perfect square trinomial: $a^2 + 2ab + b^2 = (a + b)^2$, $a = x^2$, b = 1
 - $x^4 + 2x^2 + 1 = (x^2)^2 + 2x^2 + (1)^2 = (x^2 + 1)(x^2 + 1)$
 - Example: $9x^4 16$
 - Looks like difference of squares $a^2 b^2 = (a b)(a + b)$, $a = 3x^2$, b = 4
 - $9x^4 16 = (3x^2)^2 (4)^2 = (3x^2 4)(3x^2 + 4)$

LOOKING FOR STRUCTURE

The expression $16x^4 - 81$ is in quadratic form because it can be written as $u^2 - 81$ where $u = 4x^2$.

Factor (a) $16x^4 - 81$ and (b) $3p^8 + 15p^5 + 18p^2$ completely.

SOLUTION

> **a.**
$$16x^4 - 81 = (4x^2)^2 - 9^2$$
 Write as $a^2 - b^2$.
= $(4x^2 + 9)(4x^2 - 9)$ Difference of Two

$$= (4x^2 + 9)(2x - 3)(2x + 3)$$

Difference of Two Squares Pattern

Difference of Two Squares Pattern

b.
$$3p^8 + 15p^5 + 18p^2 = 3p^2(p^6 + 5p^3 + 6)$$
 Factor common monomial.

$$=3p^2(p^3+3)(p^3+2)$$
 Factor trinomial in quadratic form.

Homework

Pg 184, #23-38